You can ask any math question and get expert answers in as little as two hours. Our math question and answer board features hundreds of math experts waiting to provide answers to your questions. And unlike your professor’s office we don’t have limited hours, so you can get your math questions answered 24/7.

## Marble Math by artgigapps.com

Unlock new marbles, collect bonuses and dodge obstacles as you reinforce core concepts in pursuit of a high score. Along with high scores and three separate difficulty levels to suit different ages and abilities, there are 16 unique marble styles to choose from. Want to hear about new apps, updates, giveaways and more? Parents and teachers can customize gameplay to concentrate on specific math concepts by selecting problem types for each level or just let the game roll with random problem generation for unlimited practice and play!

Powerapps Game Marble Math | Duration 3 Minutes 41 Seconds Find the dimensions of the largest area he can enclose.? There are an infinite number of fractions between 1 and 2, how do we ever get to 2? A farmer has 100 m of fencing and wants to build a rectangular pen for his horse. How do i find the square root of 90 with no calculator?

## Math Forum: Ask Dr. Math FAQ: Probability by mathforum.org

The study of probability helps us figure out the likelihood of something happening. For instance, in the question about the dice, you must figure out all the different ways the dice could land, and all the different ways you could roll a seven. Suppose we have a jar with 4 red marbles and 6 blue marbles, and we want to find the probability of drawing a red marble at random. In our problem, the sample space consists of all ten marbles in the jar, because we are equally likely to draw any one of them. The sample space is a set consisting of all the possible outcomes of an event (like drawing a marble from a jar, or picking a card from a deck). The probability of the occurrence of an event is always one minus the probability that it doesn’t occur. Given the only two events that are possible in this example (picking a red marble or picking a blue marble), if you don’t do the first, then you must do the second. I will draw a red one second (given that you have already drawn a blue one)? But suppose we want to know the probability of your drawing a blue marble and my drawing a red one? When we have an event made up of two separate events with the word and, where the outcome of the second event is dependent on the outcome of the first, we multiply the individual probabilities to get the answer. Well, after you draw a blue, there are 9 marbles left and 5 of them are blue, so for me the probability will be 5/9. For instance, when you roll a pair of dice, you might ask how likely you are to roll a seven. Note that when you’re dealing with an infinite number of possible events, an event that could conceivably happen might have probability zero. In this case we know that all outcomes are equally likely: any individual marble has the same chance of being drawn. Because each probability is a fraction of the sample space, the sum of the probabilities of all the possible outcomes equals one. That is, given this example, the probability of picking a red marble plus the probability of picking a blue marble will equal 1 (or 100 percent). What is the probability that you will draw a blue one first? When you draw the first marble, there are 10 marbles in the jar of which 6 are blue, so your probability of drawing a blue one is 6/10 (60 percent) or 3/5. How about the probability of my drawing a blue marble too?

## Reference Pieces On Space by friesian.com

Math 10 Provincial Review Sample A Question 11 | Duration 2 Minutes 19 Seconds Euclid’s postulates, indeed, could be thought of as those assumptions that were necessary and sufficient to derive truths of geometry, of some of which we might otherwise already be intuitively persuaded. Let angle(h, k) be an angle in a plane [alpha] and a’ a line in a plane [alpha]’ and let a definite side of a’ in [alpha]’ be given. Then there exists in the plane [alpha]’ one and only one ray k’ such that the angle(h, k) is congruent or equal to the angle(h’, k’) and at the same time all interior point of the angle(h’, k’) lie on the given side of a’. And there are going to be more of them in larger volumes of space. The reality of space thus would default to the question of the nature of the reality of virtual particles. Therefore empty space, a void, and so space itself is an unnecessary hypothesis. The answer is simply that there is a geometrical difference between left and right but not between top and bottom. Why space would be this way is a good question also, but it is a difference that makes for physical differences in the world. But here this is going to be treated like a thought experiment, where the mirror will hold the image and we can move around and consider what is actually seen from only one point of view. Given those parameters, we can imagine how the pair of images will look if we stand behind the object being reflected, and can look around it. We see a similar effect if we go around behind the mirror; and if the mirror both catches the image and is transparent, we now see both images in their correct orientation. We may think of the reversal of the image in a mirror as a kind of rotation, but real rotation in these images is of the viewpoint of the viewer. The produces the same effect and the flip from right to left. This means that the transition to a mirror image, from left to right, is accomplished by any rotation through a dimension at right angles to a two dime nsional object (or a surface). This deeply shook the physics world but nevertheless seemed to pass unnoticed among philosophers talking about space. In implicit agreement with this, people often think that scale physically doesn’t make any difference. Once the kids are shrunk, they would rapidly lose body heat and die of hypothermia — small mammals like mice have elevated metabolisms that compensate. There is an absolute and a relative sense in which this is true. Scale is literally one of the differences, and a major one, between an elephant and a mouse. Similarly, if we floated in our cube at right an amoeba, or galaxies (as we see here), its scale would become apparent. Leibniz cannot be excused from involvement with this argument, for he himself said that, if all bodies in the universe doubled in size overnight, we would notice no difference the next morning [cf. This is an ambiguous challenge, since it might mean that the linear dimensions of all bodies would double, or that the actual volume of all bodies would double.

Finding Probability Example 2 | Probability And Statistics | Khan Academy | Duration 9 Minutes 56 Seconds On the other hand, a correspondent has pointed out that the proposal is also ambiguous about what happens to the mass. Or are we talking about a body that increases proportionally in mass also? But either way, whether we conserve the mass or scale it up, the result would be both noticeable and dangerous, since a larger body of the same mass or a larger body with scaled up mass will be physically different in either case from the smaller body. Only a relation to some other figure or body would define anything about it. There need not even be a claim to truth, just the notion that we are going to do it this way and see what happens. There exist at least three points that do not lie on a line. There exist at least four points which do not lie in a plane. Of any three points on a line there exists no more than one that lies between the other two. It’s full of virtual particles that have real physical effects — particularly that they mediate the transmission of the forces of nature. And virtual particles, of course, rely on the principle that we can steal energy from nothing as long as we return it in a certain length of time — which looks like a fudge on the principles of the conservation of energy and of mass. Motion or position cannot be detected in relation to space itself, since space itself represents no object. Therefore, spatial relations are symmetrical relations among objects that are equivalent and do not exist apart from objects. And we also must note that not all optical transformations work this way. Of course, the way these images are presented is not quite right. Looking towards the mirror, we are looking in one direction, but looking through the mirrow towards the image, we are seeing things from the opposite direciton. The flip from top to bottom is something we can see if a mirror is lying on the floor, or we see things reflected in the water of a lake. If mirrors flipped things top to bottom as well as left to right, this would actually accomplish two left-to-right flips, which would cancel out.

Marble Math Junior From Artgig Studios | Duration 2 Minutes 13 Seconds Organic chemistry, however, did little to dent the conviction of physicists that handedness would not exist at the fundaments of nature. The solar system could be an atom in some larger kind of matter. But for there to be physical differences of scale, as occur in these cases, there must be a physical difference between different volumes of space. A cubic meter of water, if contained, will simply sit there. The mass can be identical, and the relative arrangement unchanged, but the actual volume will make for very different densities. With their differences in size and mass, they simply cannot have the same structure. Is the mass conserved and thus will remain the same as the body doubles (in size or dimension)? Of course, changing the mass at all contradicts the premise that we are only talking about space and its relative size. That is because as a linear dimension increases, volume increases as the cube of that dimensio n. But, at different scales, our actual bodies would function very differently, whether they retained the same mass or whether they had subtantially more mass.

## Math and Arithmetic Questions by answers.com

Then we can study what can be learned about the behavior of those features while ignoring everything else about the object. How many ml of 50 percent dextrose solution and how many ml of water are needed to prepare 100ml of 15 percent dextrose solution? The diagonals of a square bisect each corner or vertex of the square. But itdoesn’t make sense to convert pure numbers to centimeters.